
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

A Study of a Software Cache Implementation of the OpenMP

Memory Model for Multicore and Manycore Architectures

Chen Chen

Joseph B Manzano

Ge Gan

Guang R. Gao

Vivek Sarkar

CAPSL Technical Memo 093

February, 2010

Revised in May, 2010

Copyright c© 2010 CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu





Abstract

This paper is motivated by the desire to provide an efficient and scalable software cache imple-
mentation of OpenMP on multicore and manycore architectures in general, and on the IBM CELL
architecture in particular. In this paper, we propose an instantiation of the OpenMP memory model
with the following advantages: (1) The proposed instantiation prohibits out-of-thin-air values that
may cause problems of safety, security, programming and debugging. (2) The proposed instantiation
is scalable with respect to the number of threads because it does not rely on communication among
threads or a centralized directory that maintains consistency of multiple copies of each shared vari-
able. (3) The proposed instantiation avoids the ambiguity of the original memory model definition
proposed on the OpenMP Specification 3.0.

We also introduce a new cache protocol for this instantiation, which can be implemented as
a software-controlled cache. Experimental results on the Cell Broadband Engine show that our
instantiation results in nearly linear speedup with respect to the number of threads for a number of
NAS Parallel Benchmarks. The results also show a clear advantage when comparing it to a software
cache design derived from a stronger memory model that maintains a global total ordering among
flush operations.

1 Introduction

An important open problem for future multicore and manycorechip architectures is the development of
shared-memory organizations and memory consistency models (or memory models for short) that are
effective for small local memory sizes in each core, scalable to a large number of cores, and still pro-
ductive for software to use. Despite the fact that strong memory models such as Sequential Consistency
(SC) [21] are supported on mainstream small-scale SMPs, it seems likely that weaker memory models
will be explored in current and future multicore and manycore architectures such as the Cell Broadband
Engine [1], Tilera [4], and Cyclops64 [12].

OpenMP [24] is a natural candidate as a programming model formulticore and manycore processors
with software-managed local memories, thanks to its weak memory model. In the OpenMP memory
model, each thread may maintain atemporary viewof the shared memory which “allows the thread
to cache variables and thereby to avoid going to memory for every reference to a variable” [24]. It
includes aflushoperation on a specifiedflush-setthat can be used to synchronize the temporary view
with the shared memory for the variables in the flush-set. It is a weak consistency model “because a
threads temporary view of memory is not required to be consistent with memory at all times” [24].
This relaxation of the memory consistency constraints provides room for computer system designers
to experiment with a wide range of caching schemes, each of which has different performance and
cost tradeoff. Therefore, the OpenMP memory model can exhibit very different instantiations, each of
which may imply a different memory model. We say that a memorymodelM is an instantiation of the
OpenMP memory model when every read operation underM returns less or the same possible values
than the same read operation under the OpenMP memory model.

Among various instantiations of the OpenMP memory model, animportant problem is to find an
instantiation that can be efficiently implemented on multicore and manycore architectures and easily
understood by programmers.

i



Thread 1 Thread 2
1: x = 1; 4: x = 2;
2: y = 1; 5: y = 2;
3: flush(x,y); 6: flush(x,y);

Is x = 1, y = 2 (or x = 2, y = 1) legal under the OpenMP memory model?

Figure 1: A motivating example for understanding the serialization requirement under the OpenMP
memory model.

1.1 A Key Observation for Implementing the Flush Operation Efficiently

The flush operation synchronizes temporary views with the shared memory. So it is more expensive
than read and write operations. In order to efficiently implement the OpenMP memory model, the
instantiation should be able to implement the flush operation efficiently.

Unfortunately, the OpenMP memory model has the serialization requirement for flush operations,
i.e.,“if the intersection of the flush-sets of two flushes performed by two different threads is non-empty,
then the two flushes must be completed as if in some sequentialorder, seen by all threads” [24]. There-
fore, it seems that it is very hard to efficiently implement the flush operation because of the serialization
requirement. However, this requirement has a hidden meaning that is not clearly explained in [24]. The
hidden meaning is the key for efficiently implement the flush operation.

We use an example to explain the real meaning of the serialization requirement. For the program
in Fig. 1, it seems that the final status of the shared memory must be eitherx = y = 1 or x = y = 2

according to the serialization requirement. However, after discussion with the OpenMP community,
x = 1, y = 2 andx = 2, y = 1 are also legal results under the OpenMP memory model. The reason
is that the OpenMP memory model allows flush operations to be completed earlier (but cannot be later)
than the flush points (statements 3 and 6 in this program). Therefore, one possible way to get the result
x = 1, y = 2 is that firstly thread 2 assigns 2 tox and immediately flushesx into the shared memory,
then thread 1 assigns 1 tox and 1 toy and then flushesx andy, and finally thread 2 assigns 2 toy
and flushesy. Therefore, we get a key observation for implementing the flush operation efficiently as
follows.

The Key Observation: A flush operation on a flush-set of shared locations can be decomposed
into unordered flush operations on each individual location. Each flush operation after decomposition
must be completed no later than the flush point of the originalflush operation. Assuming that a memory
location is the minimal unit for atomic memory accesses, theserialization requirement is naturally
satisfied.

1.2 Main Contributions

In this paper, we propose an instantiation of the OpenMP memory model based on the key observation
in Section 1.1. It has the following advantages.

ii



• Our instantiation prohibits out-of-thin-air values that may cause problems of safety, security, pro-
gramming and debugging. The OpenMP memory model may allow out-of-thin-air values for
programs with data races. However, in our instantiation, a memory read operation always reads
the initial value or a value that was written by some thread before. So it cannot generate any out-
of-thin-air value. The out-of-thin-air values may cause various problems as pointed out in [23].
Since the OpenMP memory model supports programs with data races1, our instantiation would
be helpful when programming such programs.

• Our instantiation is scalable with respect to the number of threads because it does not rely on
communication among threads or a centralized directory that maintains consistency of multiple
copies of each shared variable.

• Our instantiation avoids the ambiguity of the original memory model definition proposed on the
OpenMP Specification 3.0, such as the unclear serializationrequirement, the problem of han-
dling temporary overflow and the unclear semantics for programs with data races. Therefore, our
instantiation is easy to understand from the angle of efficient implementations.

We also propose the cache protocol of the instantiation and implement the software-controlled cache
on Cell Broadband Engine. The experimental results show that our instantiation has nearly linear
speedup with respect to the number of threads for a number of NAS Parallel Benchmarks. The re-
sults also show a clear advantage when comparing it to a software cache design derived from a stronger
memory model that maintains a global total ordering among flush operations.

The rest of the paper is organized as follows. Section 2 introduces our instantiation of the OpenMP
memory model. Section 3 introduces the cache protocol of theinstantiation. Section 4 presents the
experimental results. Section 5 discusses the related work. The conclusion is presented in Section 6.

2 Formalization of Our OpenMP Memory Model Instantiation

A necessary prerequisite to build OpenMP’s software cache implementations is the availability of formal
memory models that establish the legality conditions for determining if an implementation is correct.
As observed in [9], “it is impossible to verify OpenMP applications formally since the prose does not
provide a formal consistency model that precisely describes how reads and writes on different threads in-
teract”. While there is general agreement that the OpenMP memory model is based ontemporary views
andflushoperations2, discussion with OpenMP experts led us to conclude that the OpenMP specification
provides a lot of leeway on whenflushoperations can be performed and on the inclusion of additional
flush operations (not specified by the programmer) to deal with local memory size constraints.

In this section, we formalize an instantiation of the OpenMPMemory Model — ModelLF , based
on the key observation in Section 1.1.ModelLF builds on OpenMP’s relaxed-consistency memory
model in which each worker thread maintains atemporary viewof shared data which may not always

1Section 2.8.6 of the OpenMP specification 3.0 [24] shows a program with data races that implements critical sections.
2Flush operations may also be implicit in synchronization operations such as barriers.

iii



be consistent with the actual data stored in the shared memory. The OpenMPflushoperation is used
to establish consistency between these temporary views andthe shared memory at specific program
points. InModelLF , each flush operation only forces local temporary view to be consistent with the
shared memory. That is why we call itModelLF where “LF” means local flush. A flush operation is only
applied on a single location. We assume that a memory location is the minimal unit for atomic memory
accesses. Therefore, the serialization requirement of flush operations is naturally satisfied. A flush
operation on a set of shared locations is decomposed into unordered flush operations on each individual
location, where those flush operations after decompositionmust be completed no later than the flush
point of the original flush operation. So it avoids the known problem of decomposition as explained in
Section 2.8.6 of the OpenMP specification 3.0 [24], where thecompiler may reorder the flush operations
after decomposition to a later position than the flush point and cause incorrect semantics.

To compare withModelLF in our experiments, we also introduce another instantiation —
ModelGF which maintains a global total ordering among flush operations.

2.1 Operational Semantics ofModelLF

In this section, we define the operational semantics ofModelLF . Firstly, we introduce a little background
for the definition. A store,σ, is a mathematical representation of the machine’s shared memory, which
maps memory location addresses to values (σ : addr 7→ val). We model temporary views by introducing
a distinct store,σi, for each worker threadTi in an OpenMP parallel region. Following OpenMP’s
convention, threadT0 is assumed to be the master thread.σi[l] represents the value stored in location
l in threadTi’s temporary view. The flush operation,flush(Ti, l) makes temporary viewσi consistent
with the shared memoryσ on locationl.

UnderModelLF , program flush operations are performed at the program points specified by the
programmer. Moreover, additional flush operations may be inserted nondeterministically by the im-
plementation at any program point, which makes it possible to implement the memory model with
bounded space for temporary views, such as caches. The operational semantics of memory operations
of ModelLF include the read, write, program flush operation and nondeterministic flush operation de-
fined as follows:

• Memory read: If threadTi needs to read the value of the locationl, it performs aread(Ti, l)

operation on storeσi. If σi does not contain any value ofl, the value in the shared memory will
be loaded toσi and returned to the read operation.

• Memory write: If threadTi needs to write valuev to the locationl, it performs awrite(Ti, v, l)

operation on storeσi.

• Program / Nondeterministic flush: If threadTi needs to synchronizeσi with the shared memory
on a shared locationl, it performs aflush(Ti, l) operation. Ifσi contains a “dirty value”3 of l,
it will write back the value into the shared memory. After theflush operation,σi will discard

3The term “dirty value” means that the value of locationl was modified by threadTi.

iv



the value ofl. A thread performs program flush operations at program points specified by the
programmer, and can nondeterministically perform flush operations at any program point. All the
program and nondeterministic flush operations on the same shared location must be observed by
all threads to be completed in the same sequential order.

2.2 Operational Semantics ofModelGF

In this section, we define the operational semantics ofModelGF . ModelGF maintains a global to-
tal ordering among flush operations. The difference betweenModelGF and ModelLF is that when
ModelGF performs a flush operation on a locationl, it enforces the temporary views of all threads to see
the same value ofl by discarding the values ofl in the temporary views. The operational semantics of
memory operations ofModelGF include the read, write, program flush operation and nondeterministic
flush operation defined as follows:

• Memory read: If threadTi needs to read the value of the locationl, it performs aread(Ti, l)

operation on storeσi. If σi does not contain any value ofl, the value in the shared memory will
be loaded toσi and returned to the read operation.

• Memory write: If threadTi needs to write valuev to the locationl, it performs awrite(Ti, v, l)

operation on storeσi.

• Program / Nondeterministic flush: If threadTi needs to synchronizeσi with the shared memory
and all the other temporary views on a shared locationl, it performs aflush(Ti, l) operation. If
σi contains a “dirty value” ofl, it will write back the value into the shared memory. Moreover,
if any other temporary view contains a clean or dirty value ofl, that value will be discarded.
After the flush operation,σi will also discard the value ofl. A thread performs program flush
operations at program points specified by the programmer, and can nondeterministically perform
flush operations at any program point. All the program and nondeterministic flush operations on
the same shared location must be observed by all threads to becompleted in the same sequential
order.

3 Cache Protocol ofModelLF

In this section, we introduce the cache protocol that implementsModelLF . We assume that each thread
contains a cache which corresponds to its temporary view. Therefore, performing operations on tem-
porary views is equivalent to performing such operations onthe caches. Without loss of generality, in
this section, we assume that each operation is performed on one cache line. The reason is that an oper-
ation on one cache line can be decomposed into sub operations; each of which is performed on a single
location. We use per-location dirty bits in a cache line to take care of the decomposition problem.

v



Invalid Clean

Dirty

read

Clean-DirtyInvalid-Dirty
read

read

read/write

read/write

write write

write

write write

write write

flush

flush

flush
flush

flush

Figure 2: State transition diagram for the cache protocol ofModelLF .

3.1 Cache Line States

We assume that each cache line contains multiple locations.Each location contains a value that can be
a “clean value”4, a “dirty value”, or an “invalid value”. Each cache line can be in one of the five states
as follows.

Invalid: All the locations contain “invalid values”.

Clean: All the locations contain “clean values”.

Dirty: All the locations contain “dirty values”.

Clean-Dirty: Some locations contain “clean values”. The others contain “dirty values”.

Invalid-Dirty: Some locations contain “invalid values”. The others contain “dirty values”.

For simplicity, the cache line cannot be in other states suchasInvalid-Clean. Additional nondeter-
ministic flush operations may be performed when necessary toforce the cache line to be in one of the
five states as above. We use a per-line flag bit together with the dirty bits to represent the state of the
cache line. The flag bit indicates whether those non-dirty values in the cache line are clean or invalid.

3.2 Cache Operations and State Transitions

The state transition diagram ofModelLF cache protocol is shown in Fig. 2. Now we explain how each
cache operation affects the state transition diagram.

Memory read: If the original state of the cache line is invalid or invalid-dirty, the invalid loca-
tions will load “clean values” from memory. Therefore, the state will change to clean or clean-dirty,
respectively. In other cases, the state will not change. After that, the values in the cache line will be
returned.

4The term “clean value” means that the value of the location was not modified by the thread.

vi



Memory write: A write operation writes specified “dirty values” to the cache line. Therefore, if the
original state is invalid or invalid-dirty, it becomes either invalid-dirty or dirty after the write operation,
which depends on whether all the locations contain “dirty values”. In other cases, the state will become
either clean-dirty or dirty, which depends on whether all the locations contain “dirty values”.

Program / Nondeterministic flush: A flush operation forces all the “dirty values” of the cache line
to be written back into memory. Then, the state will become invalid.

There may be various ways to implement the flush operation. For example, many architectures
support a block of data to be written back at a time. So a possible way of implementing the flush
operation is to write back the entire cache line that is beingflushed together with the dirty bits and then
merge the “dirty values” into the corresponding memory linein the shared memory. If the mergence in
memory is not supported, a thread has to load the memory line,and then merge it with the cache line,
and finally write back the merged line, where the process mustbe atomic to handle the false sharing
problem.

4 Experimental Results and Analyses

In this section, we introduce our experimental results under ModelLF cache protocol. In section 4.1,
we introduce the experimental testbed. Then in section 4.2,we introduce the major observations of our
experiments. Finally, we introduce the details and analyses of the observations in the last two sections.

4.1 Experimental Testbed

The experimental results presented in this paper were obtained on the Cell Broadband Engine Architec-
ture (CBEA) [1] under the OPELL (OPenmp for cELL) framework [20].

4.1.1 CBEA.

CBEA has a main processor called the Power Processing Element (PPE) and a number of co-processors
called the Synergistic Processing Elements (SPEs). The PPEhandles most of the computational work-
load and has control over the SPEs,i.e., start, stop, interrupt, and schedule processes onto the SPEs.
Each SPE has a 256KB local storage which is used to store both instructions and data. An SPE can
only access its own local storage directly. Both PPE and SPEsshare main memory. SPEs access main
memory via DMA (direct memory access) transfers which are much slower than the access on each
SPE’s own local storage.

We executed the programs on a PlayStation 3 [3] which has one 3.2 GHz Cell Broadband Engine
CPU (with 6 accessible SPEs) and 256MB global shared memory.Our experiments used all 6 SPEs
with the exception of the evaluation of speedup which used various numbers of SPEs from 1 to 6.

vii



4.1.2 OPELL Framework.

OPELL is an open source toolchain / runtime effort to implement OpenMP for the CBEA. OPELL has
a single source compiler which compiles an OpenMP program toa single source file that is executable
on CBEA.

During runtime, the executable file starts to run sequentialcodes of the program on PPE. Once the
program enters a parallel region, PPE will assign tasks of computing parallel codes to SPEs. After
SPEs finish the tasks, the parallel region ends and PPE will goahead to execute the following sequential
codes.

Since each SPE only has 256KB local storage to store both instructions and data, OPELL has a
partition /overlay manager runtime library that partitions the parallel codes into small pieces to fit for
the local storage size, and loads and replaces those pieces on demand.

Since a DMA transfer is much slower than an access on the localstorage, OPELL has a software
cache runtime library to take advantage of locality. The runtime library manages a part of local storages
as caches and has a user interface for accessing. We implement our cache protocol in OPELL’s software
cache runtime library. The cache protocol uses 4-way set associative caches. The size of each cache
line is 128 bytes. We ran the experiments on various cache sizes which range from 4KB to 64KB. We
did not try bigger cache size because the size of local storage is very limited (256KB) and a part of it is
used to store instructions and maintain stack.

4.1.3 Benchmarks

We used three benchmark programs in our experiments — Integer Sort (IS), Embarrassingly Parallel
(EP) and Multigrid (MG) from the NAS Parallel Benchmarks [2]. In our experiments, the OpenMP
code was used with little change from the original benchmarkversion. Hence, our implementation does
not have adverse impact on OpenMP programmability.

4.2 Summary of Main Results

The main results of our experiments are as follows:

• Result I: Scalability (Section 4.3).

ModelLF cache protocol has nearly linear speedup with respect to thenumber of threads for the
tested benchmarks.

• Result II: Impact of Cache Size (Section 4.4).

We useModelGF to compare withModelLF . To implementModelGF , we simulate a central-
ized directory that maintains the information for all the caches. So a flush operation under
ModelGF can look up the directory and inform the threads that containthe value of the same
location to discard the value. We also assume that the centralized directory is “idealized”, which

viii



IS-W and EP-W

achieve almost

linear speedup.

MG-W performs

worse because

of unbalanced

workloads.

Figure 3: Speedup as a function of the number of SPEs underModelLF cache protocol.

means that the cost of cache information maintaining and lookup is trivial. However, the cost
of informing another thread is as expensive as a DMA transferin CEBA. To our knowledge,
currently there is no other formalized instantiation of theOpenMP memory model that can be
implemented for comparison.

ModelLF outperformsModelGF due to its cheaper flush operations. Our results show that the
performance gap betweenModelLF and ModelGF cache protocols increases as the cache size
becomes smaller. This observation is significant because the current trend in multicore and many-
core processors is that the local memory size per core decreases as the number of cores increases.

4.3 Scalability

Fig. 3 shows the speedup as a function of the number of SPEs (Weassume that each SPE runs a thread.)
underModelLF cache protocol. The tested applications are MG with a 32KB cache size, and IS and EP
with a 64KB cache size. All the three applications have inputsizeW. We can see that for IS and EP
benchmarks,ModelLF cache protocol nearly achieves linear speedup. For MG benchmark, the speedup
is not as good as the other two when the number of threads is 3, 5and 6. The reason is that the workloads
among threads are not balanced when the number of threads is not a power of 2.

4.4 Impact of Cache Size

Fig. 4 and 5 show execution time and cache eviction ratio curves for IS and MG with input sizeW
on various cache sizes (4KB, 8KB, 16KB, 32KB and 64KB5) per thread. The two figures show that
the cache eviction ratio curves under the two cache protocols are equal, but the execution time curves
are not. Moreover, the difference in execution time becomeslarger as the cache size becomes smaller.
This is because the cost of cache eviction inModelGF cache protocol is much higher. Moreover, the
smaller the cache size is, the higher the cache eviction ratio is. To show the change of performance gap
clearly, we normalize the execution time into the interval[0, 1] by applying division on every execution

564KB is only for IS

ix



The difference of 
normalized exec-
ution time increa-
sed from 0.15 to 
0.25 as the cache 
size per SPE was 

decreased from 
64KB to 4KB.

The two curves of 
cache eviction rat-
io are overlapped 

because of comp-
letely identical 
cache settings.

Figure 4: Trends of execution time and cache eviction ratio for IS-W on various cache sizes.

time where the divisor is the maximal execution time in all tested configurations. The corresponding
configurations to the maximal execution time are 4KB cache sizes underModelGF for both MG and IS.

The performance gap betweenModelGF andModelLF keeps constantly for EP when we change the
cache sizes. The reason is that EP has very bad temporal locality. So it is insensitive to the change of
cache sizes.

5 Related Work

Despite over two decades of research on memory consistency models, there does not appear to be a
consensus on how memory models should be formalized [6, 27, 26, 7]. The efforts to formalize memory
models for mainstream parallel languages such as the Java memory model [23], the C++ memory model
[8], and the OpenMP memory model [9] all take different approaches.

The authoritative source for the OpenMP memory model can be found in the specifications for
OpenMP 3.0 [24], but the memory model definition therein is provided in terms of informal prose.
To address this limitation, a formalization of the OpenMP memory model was presented in [9]. In this
paper, the authors developed a formal, mathematical language to model the relevant features of OpenMP.
They developed an operational model to verify its conformance to the OpenMP standard. Through
these tools, the authors found that the OpenMP memory model is weaker than the weak consistency
model [14]. The authors also claimed that they found some ambiguities in the informal definition
of the OpenMP memory model presented in the OpenMP specification version 2.5 [5]. Since there

x



The difference of 

normalized exec-
ution time increa-
sed from 0.04 to 
0.16 as the cache 
size per SPE was 
decreased from 

32KB to 4KB.

The two curves of 
cache eviction rat-
io are overlapped 
because of comp-

letely identical 
cache settings.

GF

LF

Figure 5: Trends of execution time and cache eviction ratio for MG-W on various cache sizes.

is no significant change of the OpenMP memory model from version 2.5 to version 3.0, their work
demonstrates the need for the OpenMP community to work towards a formal and complete definition of
the OpenMP memory model.

Some early research on software controlled caches can be found in the NYU Ultracomputer [19],
Cedar [17], and IBM RP3 [25] projects. All three machines have local memories that can be used
as programmable caches, with software taking responsibility for maintaining consistency by inserting
explicit synchronization and cache consistency operations. By default, this responsibility falls on the
programmer but compiler techniques have also been developed in which these operations are inserted
by the compiler instead,e.g., [13]. Interest in software caching has been renewed with theadvent
of multicore processors with local memories such as the CellBroadband Engine. There have been a
number of reports on more recent software cache optimization from compiler angle as described in
[16, 15, 11].

Examples of recent work on software cache protocol implementation on CELL processors can be
found in [22, 10, 18]. The cache protocol used in [22] uses a centralized directory to keep tract cache
line state information in the implementation - reminds us theModelGF cache protocol in this paper. The
cache protocols reported in [10, 18] do not appear to use a centralized directory - hence appear to be
more close to theModelLF cache protocol. However, we do not have access to the detailed information
on the implementations of these models, and cannot make a more definitive comparisons at the time
when this paper is written.

OPELL [20] is an open source toolchain / runtime effort to implement OpenMP for the Cell Broad-

xi



band Engine. Our cache protocol framework reported here hasbeen developed much earlier in 2006-
2007 frame and embedded in OPELL (see [20])- but the protocols themselves are not published exter-
nally.

6 Conclusion

In this paper, we investigate the problem of software cache implementations for the OpenMP memory
model on multicore and manycore processors. We propose an instantiation of the OpenMP memory
model —ModelLF which prohibits out-of-thin-air values and avoids the ambiguity of the original mem-
ory model definition on OpenMP Specification 3.0.ModelLF is scalable with respect to the number
of threads because it does not rely on communications among threads or a centralized directory that
maintains consistency of multiple copies of each shared variable.

We propose the corresponding cache protocol and implement the cache protocol by software cache
on the Cell processor. The experimental results show thatModelLF cache protocol has nearly linear
speedup with respect to the number of threads for a number of NAS Parallel Benchmarks. The results
also show a clear advantage when comparing it toModelGF cache protocol derived from a stronger
memory model that maintains a global total ordering among flush operations.

This provides a useful way that how to formalize (architecture unspecified) OpenMP memory model
in different ways and evaluate the instantiations to produce different performance profiles. Our conclu-
sion is that OpenMP’s relaxed memory model with temporary views is a good match for software cache
implementations, and that the refinements inModelLF can lead to good opportunities for scalable im-
plementations of OpenMP on future multicore and manycore processors.

References

[1] Cell Broadband Engine. http://www-01.ibm.com/chips/techlib/techlib.nsf/products/
Cell BroadbandEngine.

[2] NAS Parallel Benchmark. http://www.nas.nasa.gov/Resources/Software/npb.html.

[3] PlayStation3. http://www.us.playstation.com/ps3/features.

[4] Tilera. http://www.tilera.com/.

[5] OpenMP Application Program Interface, 2005. http://www.openmp.org/mp-
documents/spec25.pdf.

[6] Sarita Adve and Mark D. Hill. A unified formalization of four shared-memory models.IEEE
Transactions on Parallel and Distributed Systems, 4:613–624, 1993.

[7] Arvind Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomic-
ity. SIGARCH Comput. Archit. News, 34(2):29–40, 2006.

xii



[8] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory model. InPLDI
’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and
implementation, pages 68–78, New York, NY, USA, 2008. ACM.

[9] Greg Bronevetsky and Bronis R. de Supinski. Complete formal specification of the OpenMP
memory model.Int. J. Parallel Program., 35(4):335–392, 2007.

[10] Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating datatransfer for the Cell/B.E. processor.
In ICS ’08: Proceedings of the 22nd annual international conference on Supercomputing, pages
289–298, New York, NY, USA, 2008. ACM.

[11] Tong Chen, Tao Zhang, Zehra Sura, and Mar Gonzales Tallada. Prefetching irregular references for
software cache on CELL. InCGO ’08: Proceedings of the sixth annual IEEE/ACM international
symposium on Code generation and optimization, pages 155–164, New York, NY, USA, 2008.
ACM.

[12] Juan Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Fast: A functionally accurate sim-
ulation toolset for the Cyclops-64 cellular architecture.In In Proceedings of the Workshop on
Modeling, Benchmarking and Simulation, pages 11–20, Madison, Wisconsin, June 4, 2005. Held
in conjunction with the 32nd Annual International Symposium on Computer Architecture., pages
11–20, 2005.

[13] Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic management of programmable
caches. InICPP’88: Proceedings of the 1988 International Conferenceon Parallel Processing,
pages 229–238, Augest 1988.

[14] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering in multiproces-
sors. InISCA ’98: 25 years of the international symposia on Computerarchitecture (selected
papers), pages 320–328, New York, NY, USA, 1998. ACM.

[15] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden, D. A. Prener,
J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.Gschwind, R. Archambault,
Y. Gao, and R. Koo. Using advanced compiler technology to exploit the performance of the Cell
Broadband EngineTM architecture.IBM Syst. J., 45(1):59–84, 2006.

[16] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu, Tong Chen, Peter H.
Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro So, Zehra Sura, Amy Wang, Tao Zhang,
Peng Zhao, and Michael Gschwind. Optimizing compiler for the CELL processor. InPACT
’05: Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques, pages 161–172, Washington, DC, USA, 2005. IEEE Computer Society.

[17] D Gajski, D Kuck, D Lawrie, and A Sameh. CEDAR—a large scale multiprocessor. pages 69–74,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[18] Marc Gonzàlez, Nikola Vujic, Xavier Martorell, Eduard Ayguadé, Alexandre E. Eichenberger,
Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and KathrynO’Brien. Hybrid access-specific

xiii



software cache techniques for the Cell BE architecture. InPACT ’08: Proceedings of the 17th
international conference on Parallel architectures and compilation techniques, pages 292–302,
New York, NY, USA, 2008. ACM.

[19] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and Marc
Snir. The NYU ultracomputer—designing a MIMD, shared-memory parallel machine. InISCA
’98: 25 years of the international symposia on Computer architecture (selected papers), pages
239–254, New York, NY, USA, 1998. ACM.

[20] Joseph Manzano, Ziang Hu, Yi Jiang and Ge Gan. Towards anautomatic code layout framework.
In IWOMP ’07: Proceedings of the International Workshop on OpenMP (2007), Beijing, China,
2007.

[21] L. Lamport. How to make a multiprocessor that correctlyexecutes multiprocess programs.IEEE
Trans. on Computers, C-28(9):690–691, September 1979.

[22] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun, Zehra Sura, Jungwon Kim,
and SangYong Han. COMIC: a coherent shared memory interfacefor Cell BE. In PACT ’08:
Proceedings of the 17th international conference on Parallel architectures and compilation tech-
niques, pages 303–314, New York, NY, USA, 2008. ACM.

[23] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. InPOPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 378–391, New York, NY, USA, 2005. ACM.

[24] OpenMP Architecture Review Board. OpenMP ApplicationProgram Interface Version 3.0, May
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[25] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe, E.A.
Melton, V.A. Norton, and J. Weiss. The research parallel processor prototype (RP3): Introduction
and architecture. InICPP’85: Proceedings of the 1985 International Conferenceon Parallel
Processing, pages 764–771, 1985.

[26] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph von Praun. A theory of
memory models. InPPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 161–172, New York, NY, USA, 2007. ACM.

[27] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile & Fences (CRF): a new memory
model for architects and compiler writers. InISCA ’99: Proceedings of the 26th annual interna-
tional symposium on Computer architecture, pages 150–161, Washington, DC, USA, 1999. IEEE
Computer Society.

xiv


