University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

A Study of a Software Cache Implementation of the OpenMP
Memory Model for Multicore and Manycore Architectures

Chen Chen
Joseph B Manzano
Ge Gan
Guang R. Gao
Vivek Sarkar

CAPSL Technical Memo 093
February, 2010
Revised in May, 2010

Copyright (© 2010 CAPSL at the University of Delaware

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

This paper is motivated by the desire to provide an efficiadtgcalable software cache imple-
mentation of OpenMP on multicore and manycore architestirgeneral, and on the IBM CELL
architecture in particular. In this paper, we propose atairtgtion of the OpenMP memory model
with the following advantages: (1) The proposed instaiatieprohibits out-of-thin-air values that
may cause problems of safety, security, programming andgighg. (2) The proposed instantiation
is scalable with respect to the number of threads because# bt rely on communication among
threads or a centralized directory that maintains consistef multiple copies of each shared vari-
able. (3) The proposed instantiation avoids the ambigdith® original memory model definition
proposed on the OpenMP Specification 3.0.

We also introduce a new cache protocol for this instantiatishich can be implemented as
a software-controlled cache. Experimental results on tbkk Broadband Engine show that our
instantiation results in nearly linear speedup with respethe number of threads for a number of
NAS Parallel Benchmarks. The results also show a clear a@ganvhen comparing it to a software
cache design derived from a stronger memory model that aiaia global total ordering among
flush operations.

1 Introduction

An important open problem for future multicore and manyacdip architectures is the development of
shared-memory organizations and memory consistency si¢gdememory models for short) that are
effective for small local memory sizes in each core, scaléabla large number of cores, and still pro-
ductive for software to use. Despite the fact that strong orgmmodels such as Sequential Consistency
(SC) [21] are supported on mainstream small-scale SMPseins likely that weaker memory models
will be explored in current and future multicore and mangcarchitectures such as the Cell Broadband
Engine [1], Tilera [4], and Cyclops64 [12].

OpenMP [24] is a natural candidate as a programming modehétdiicore and manycore processors
with software-managed local memories, thanks to its weakomg model. In the OpenMP memory
model, each thread may maintairteanporary viewof the shared memory which “allows the thread
to cache variables and thereby to avoid going to memory feryexeference to a variable” [24]. It
includes aflushoperation on a specifiefush-setthat can be used to synchronize the temporary view
with the shared memory for the variables in the flush-sets # ieak consistency model “because a
threads temporary view of memory is not required to be ctersisvith memory at all times” [24].
This relaxation of the memory consistency constraints ipies/room for computer system designers
to experiment with a wide range of caching schemes, each aflwias different performance and
cost tradeoff. Therefore, the OpenMP memory model can &gy different instantiations, each of
which may imply a different memory model. We say that a mermmogelM is an instantiation of the
OpenMP memory model when every read operation uMleeturns less or the same possible values
than the same read operation under the OpenMP memory model.

Among various instantiations of the OpenMP memory modelingportant problem is to find an
instantiation that can be efficiently implemented on maolgcand manycore architectures and easily
understood by programmers.

Thread1 | Thread 2
1: x=1; 4: x=2;
2:y=1; 5:y=2;
3: flush(x,y); | 6: flush(x,y);
Isx =1,y =2 (orz =2,y = 1) legal under the OpenMP memory model?

Figure 1. A motivating example for understanding the semddion requirement under the OpenMP
memory model.

1.1 A Key Observation for Implementing the Flush Operation Hficiently

The flush operation synchronizes temporary views with ttegeshmemory. So it is more expensive
than read and write operations. In order to efficiently immat the OpenMP memory model, the
instantiation should be able to implement the flush opanagiticiently.

Unfortunately, the OpenMP memory model has the seriatinatequirement for flush operations,
i.e.,"“if the intersection of the flush-sets of two flushes perfodrbg two different threads is non-empty;,
then the two flushes must be completed as if in some sequentiat, seen by all threads” [24]. There-
fore, it seems that it is very hard to efficiently implemerd flush operation because of the serialization
requirement. However, this requirement has a hidden mgdhat is not clearly explained in [24]. The
hidden meaning is the key for efficiently implement the flupkeration.

We use an example to explain the real meaning of the setializeequirement. For the program
in Fig. 1, it seems that the final status of the shared memost brieitherr = y = 1orxz =y = 2
according to the serialization requirement. However,rafiecussion with the OpenMP community,
r =1,y = 2andx = 2,y = 1 are also legal results under the OpenMP memory model. Thomea
is that the OpenMP memory model allows flush operations t@b@teted earlier (but cannot be later)
than the flush points (statements 3 and 6 in this program)teftne, one possible way to get the result
x = 1,y = 2 is that firstly thread 2 assigns 2 toand immediately flushes into the shared memory,
then thread 1 assigns 1 #oand 1 toy and then flushes andy, and finally thread 2 assigns 2 {o
and flushes;. Therefore, we get a key observation for implementing thehfloperation efficiently as
follows.

The Key Observation: A flush operation on a flush-set of shared locations can bendeased
into unordered flush operations on each individual locatigach flush operation after decomposition
must be completed no later than the flush point of the origlnah operation. Assuming that a memory
location is the minimal unit for atomic memory accesses, d@Balization requirement is naturally
satisfied.

1.2 Main Contributions

In this paper, we propose an instantiation of the OpenMP nmgmaodel based on the key observation
in Section 1.1. It has the following advantages.

¢ Our instantiation prohibits out-of-thin-air values thaayrcause problems of safety, security, pro-
gramming and debugging. The OpenMP memory model may allawothin-air values for
programs with data races. However, in our instantiation.eanory read operation always reads
the initial value or a value that was written by some threddiee So it cannot generate any out-
of-thin-air value. The out-of-thin-air values may causeioas problems as pointed out in [23].
Since the OpenMP memory model supports programs with dagstaour instantiation would
be helpful when programming such programs.

¢ Our instantiation is scalable with respect to the numbethoédads because it does not rely on
communication among threads or a centralized directoryrttantains consistency of multiple
copies of each shared variable.

¢ Our instantiation avoids the ambiguity of the original meymodel definition proposed on the
OpenMP Specification 3.0, such as the unclear serializagquairement, the problem of han-
dling temporary overflow and the unclear semantics for @ogrwith data races. Therefore, our
instantiation is easy to understand from the angle of efftaraplementations.

We also propose the cache protocol of the instantiationraptement the software-controlled cache
on Cell Broadband Engine. The experimental results showdba instantiation has nearly linear
speedup with respect to the number of threads for a numbeA& Rarallel Benchmarks. The re-
sults also show a clear advantage when comparing it to aaafteache design derived from a stronger
memory model that maintains a global total ordering amorghfiperations.

The rest of the paper is organized as follows. Section 2dnires our instantiation of the OpenMP
memory model. Section 3 introduces the cache protocol ofrtsiantiation. Section 4 presents the
experimental results. Section 5 discusses the related. Wik conclusion is presented in Section 6.

2 Formalization of Our OpenMP Memory Model Instantiation

A necessary prerequisite to build OpenMP’s software catipdementations is the availability of formal
memory models that establish the legality conditions fdedrining if an implementation is correct.
As observed in [9], “it is impossible to verify OpenMP applions formally since the prose does not
provide a formal consistency model that precisely desstitmev reads and writes on different threads in-
teract”. While there is general agreement that the OpenMfangmodel is based demporary views
andflushoperation$, discussion with OpenMP experts led us to conclude that fren®IP specification
provides a lot of leeway on whdtushoperations can be performed and on the inclusion of adaition
flush operations (not specified by the programmer) to dedl lwdtal memory size constraints.

In this section, we formalize an instantiation of the OpenM®&mory Model — ModeLF , based
on the key observation in Section 1.1ModeLF builds on OpenMP’s relaxed-consistency memory
model in which each worker thread maintaingemporary viewof shared data which may not always

1Section 2.8.6 of the OpenMP specification 3.0 [24] shows grara with data races that implements critical sections.
2Flush operations may also be implicit in synchronizatiorragions such as barriers.

be consistent with the actual data stored in the shared nyeriitie OpenMHlush operation is used
to establish consistency between these temporary viewshendhared memory at specific program
points. InModelLF , each flush operation only forces local temporary view to dresistent with the
shared memory. That is why we calNtodeLF where “LF” means local flush. A flush operation is only
applied on a single location. We assume that a memory lotéithe minimal unit for atomic memory
accesses. Therefore, the serialization requirement di fiperations is naturally satisfied. A flush
operation on a set of shared locations is decomposed intalerea flush operations on each individual
location, where those flush operations after decompositiast be completed no later than the flush
point of the original flush operation. So it avoids the knowahem of decomposition as explained in
Section 2.8.6 of the OpenMP specification 3.0 [24], wheretmepiler may reorder the flush operations
after decomposition to a later position than the flush pamat @ause incorrect semantics.

To compare withModeLF in our experiments, we also introduce another instantiatie
ModelcF which maintains a global total ordering among flush openstio

2.1 Operational Semantics oModelLF

In this section, we define the operational semantiddadelF . Firstly, we introduce a little background
for the definition. A storeg, is a mathematical representation of the machine’s shassdary, which
maps memory location addresses to valwesdddr — val). We model temporary views by introducing
a distinct storeg;, for each worker thread; in an OpenMP parallel region. Following OpenMP’s
convention, thready is assumed to be the master threagl!] represents the value stored in location
[in threadT;’s temporary view. The flush operatioftishZ;,) makes temporary view,; consistent
with the shared memory on location.

UnderModeLF , program flush operations are performed at the program gejpecified by the
programmer. Moreover, additional flush operations may Berted nondeterministically by the im-
plementation at any program point, which makes it possiblariplement the memory model with
bounded space for temporary views, such as caches. Thdiopal&emantics of memory operations
of ModeLF include the read, write, program flush operation and nomaetéstic flush operation de-
fined as follows:

e Memory read: If threadT; needs to read the value of the locatignt performs aread(T;, 1)
operation on store;. If o; does not contain any value ffthe value in the shared memory will
be loaded tar; and returned to the read operation.

e Memory write: If thread7; needs to write value to the locatior, it performs awrite(T;, v, 1)
operation on store;.

e Program / Nondeterministic flush: If threadT; needs to synchronizg with the shared memory
on a shared locatioh it performs aflush(T;, 1) operation. Ifo; contains a “dirty value® of I,
it will write back the value into the shared memory. After thesh operationg; will discard

3The term “dirty value” means that the value of locationas modified by thread;.

v

the value ofl. A thread performs program flush operations at program ga@pecified by the
programmer, and can nondeterministically perform flushrapens at any program point. All the
program and nondeterministic flush operations on the saaredocation must be observed by
all threads to be completed in the same sequential order.

2.2 Operational Semantics oModelGF

In this section, we define the operational semanticdlotlelcF . ModelcF maintains a global to-
tal ordering among flush operations. The difference betwdedelcF and ModeLF is that when
ModelcF performs a flush operation on a locatignit enforces the temporary views of all threads to see
the same value dfby discarding the values @fin the temporary views. The operational semantics of
memory operations dflodelcF include the read, write, program flush operation and nomchétéstic
flush operation defined as follows:

e Memory read: If threadT; needs to read the value of the locatignt performs aread(T;, 1)
operation on store;. If o; does not contain any value ffthe value in the shared memory will
be loaded ter; and returned to the read operation.

e Memory write: If thread7; needs to write value to the location, it performs awrite(T;, v, 1)
operation on store;.

e Program / Nondeterministic flush: If threadT; needs to synchronizg with the shared memory
and all the other temporary views on a shared locatjgnperforms aflush(7;,1) operation. If
o; contains a “dirty value” of, it will write back the value into the shared memory. Moregve
if any other temporary view contains a clean or dirty valud,ahat value will be discarded.
After the flush operationg; will also discard the value of A thread performs program flush
operations at program points specified by the programmdrcan nondeterministically perform
flush operations at any program point. All the program anddeterministic flush operations on
the same shared location must be observed by all threadsdonfygleted in the same sequential
order.

3 Cache Protocol ofModelLF

In this section, we introduce the cache protocol that imgletsModelLF . We assume that each thread

contains a cache which corresponds to its temporary vieverefbre, performing operations on tem-

porary views is equivalent to performing such operationshencaches. Without loss of generality, in

this section, we assume that each operation is performed®cache line. The reason is that an oper-
ation on one cache line can be decomposed into sub operadacis of which is performed on a single

location. We use per-location dirty bits in a cache line teeteare of the decomposition problem.

flush read read

read/write

Invalid-Dirty Clean-Dirty

write

d/write

Figure 2: State transition diagram for the cache protoctlofleLF .

3.1 Cache Line States

We assume that each cache line contains multiple locatiBash location contains a value that can be
a “clean value™, a “dirty value”, or an “invalid value”. Each cache line camin one of the five states
as follows.

Invalid: All the locations contain “invalid values”.

Clean: All the locations contain “clean values”.

Dirty: All the locations contain “dirty values”.

Clean-Dirty: Some locations contain “clean values”. The others contdirrty* values”.
Invalid-Dirty: Some locations contain “invalid values”. The others cantdirty values”.

For simplicity, the cache line cannot be in other states sisthvalid-Clean. Additional nondeter-
ministic flush operations may be performed when necessdigrde the cache line to be in one of the
five states as above. We use a per-line flag bit together watlditity bits to represent the state of the
cache line. The flag bit indicates whether those non-dirtyesin the cache line are clean or invalid.

3.2 Cache Operations and State Transitions

The state transition diagram dfodelLF cache protocol is shown in Fig. 2. Now we explain how each
cache operation affects the state transition diagram.

Memory read: If the original state of the cache line is invalid or invatitity, the invalid loca-
tions will load “clean values” from memory. Therefore, thate will change to clean or clean-dirty,
respectively. In other cases, the state will not changeerAfiat, the values in the cache line will be
returned.

“The term “clean value” means that the value of the locatios ma modified by the thread.

Vi

Memory write: A write operation writes specified “dirty values” to the cadme. Therefore, if the
original state is invalid or invalid-dirty, it becomes esthinvalid-dirty or dirty after the write operation,
which depends on whether all the locations contain “dirty@s”. In other cases, the state will become
either clean-dirty or dirty, which depends on whether al lilcations contain “dirty values”.

Program / Nondeterministic flush: A flush operation forces all the “dirty values” of the cachreeli
to be written back into memory. Then, the state will beconvalid.

There may be various ways to implement the flush operatior. ekample, many architectures
support a block of data to be written back at a time. So a plessiby of implementing the flush
operation is to write back the entire cache line that is béughed together with the dirty bits and then
merge the “dirty values” into the corresponding memory liméhe shared memory. If the mergence in
memory is not supported, a thread has to load the memorydimetthen merge it with the cache line,
and finally write back the merged line, where the process tesitomic to handle the false sharing
problem.

4 Experimental Results and Analyses

In this section, we introduce our experimental results uldedeLF cache protocol. In section 4.1,
we introduce the experimental testbed. Then in sectionwk2ntroduce the major observations of our
experiments. Finally, we introduce the details and analpé¢he observations in the last two sections.

4.1 Experimental Testbed

The experimental results presented in this paper werermatain the Cell Broadband Engine Architec-
ture (CBEA) [1] under the OPELL (OPenmp for cELL) framewo20].

41.1 CBEA.

CBEA has a main processor called the Power Processing EléRieR) and a number of co-processors
called the Synergistic Processing Elements (SPEs). Theh@Rdes most of the computational work-
load and has control over the SPEs,, start, stop, interrupt, and schedule processes onto the.SPE
Each SPE has a 256KB local storage which is used to store bsfituétions and data. An SPE can
only access its own local storage directly. Both PPE and SR&® main memory. SPEs access main
memory via DMA (direct memory access) transfers which arehmslower than the access on each
SPE’s own local storage.

We executed the programs on a PlayStation 3 [3] which has ¢h&Hz Cell Broadband Engine
CPU (with 6 accessible SPEs) and 256MB global shared mentuy.experiments used all 6 SPEs
with the exception of the evaluation of speedup which usemwa numbers of SPEs from 1 to 6.

Vii

4.1.2 OPELL Framework.

OPELL is an open source toolchain / runtime effort to implab@penMP for the CBEA. OPELL has
a single source compiler which compiles an OpenMP programsiagle source file that is executable
on CBEA.

During runtime, the executable file starts to run sequentdes of the program on PPE. Once the
program enters a parallel region, PPE will assign tasks ofpeding parallel codes to SPEs. After
SPEs finish the tasks, the parallel region ends and PPE walhgad to execute the following sequential
codes.

Since each SPE only has 256KB local storage to store bottuatisins and data, OPELL has a
partition /overlay manager runtime library that partisotme parallel codes into small pieces to fit for
the local storage size, and loads and replaces those piecEsand.

Since a DMA transfer is much slower than an access on the #boedge, OPELL has a software
cache runtime library to take advantage of locality. Thdirne library manages a part of local storages
as caches and has a user interface for accessing. We impleurexache protocol in OPELL's software
cache runtime library. The cache protocol uses 4-way secedse caches. The size of each cache
line is 128 bytes. We ran the experiments on various cacles svhich range from 4KB to 64KB. We
did not try bigger cache size because the size of local stdsagery limited (256KB) and a part of it is
used to store instructions and maintain stack.

4.1.3 Benchmarks

We used three benchmark programs in our experiments — infeg (IS), Embarrassingly Parallel

(EP) and Multigrid (MG) from the NAS Parallel Benchmarks.[2h our experiments, the OpenMP

code was used with little change from the original benchrmvarkion. Hence, our implementation does
not have adverse impact on OpenMP programmaubility.

4.2 Summary of Main Results

The main results of our experiments are as follows:

e Result I: Scalability (Section 4.3)
ModeLF cache protocol has nearly linear speedup with respect tauhwber of threads for the
tested benchmarks.

e Result Il: Impact of Cache Size (Section 4.4)

We useModelGF to compare withModeLF . To implementModelcF , we simulate a central-
ized directory that maintains the information for all thecloas. So a flush operation under
ModelcF can look up the directory and inform the threads that contiagnvalue of the same
location to discard the value. We also assume that the ¢ierttadirectory is “idealized”, which

viii

6 IS-W and EP-W
= MG-W /‘ achieve almost

e 1S-W /5// linear speedup.

t [EP-W / MG-W performs
3 worse because

/ of unbalanced

2 / workloads.

1

1 2 3 4 5 6
Number of Threads (SPEs)

Speedup

Figure 3: Speedup as a function of the number of SPEs uMddeLF cache protocol.

means that the cost of cache information maintaining ankupas trivial. However, the cost
of informing another thread is as expensive as a DMA transf€EBA. To our knowledge,
currently there is no other formalized instantiation of ®penMP memory model that can be
implemented for comparison.

ModeLF outperformsModelcF due to its cheaper flush operations. Our results show that the
performance gap betwedviodeLF and ModelcF cache protocols increases as the cache size
becomes smaller. This observation is significant becawseutirent trend in multicore and many-
core processors is that the local memory size per core deges the number of cores increases.

4.3 Scalability

Fig. 3 shows the speedup as a function of the number of SPEag¥uene that each SPE runs a thread.)
underModelLF cache protocol. The tested applications are MG with a 32kdeasize, and IS and EP
with a 64KB cache size. All the three applications have irginé W. We can see that for IS and EP
benchmarksModelF cache protocol nearly achieves linear speedup. For MG lneaid) the speedup

is not as good as the other two when the number of threads sr®] 6. The reason is that the workloads
among threads are not balanced when the number of threadsagower of 2.

4.4 Impact of Cache Size

Fig. 4 and 5 show execution time and cache eviction ratioesufer IS and MG with input siz&V

on various cache sizes (4KB, 8KB, 16KB, 32KB and 64RBper thread. The two figures show that
the cache eviction ratio curves under the two cache pratcm@ equal, but the execution time curves
are not. Moreover, the difference in execution time becolaegr as the cache size becomes smaller.
This is because the cost of cache evictioModelcF cache protocol is much higher. Moreover, the
smaller the cache size is, the higher the cache eviction isatiTo show the change of performance gap
clearly, we normalize the execution time into the inteff@al | by applying division on every execution

64KB is only for IS

The difference of
normalized exec-
ution time increa-
sed from 0.15 to

0.25 as the cache
size per SPE was

|

S s
1w

=

S
=

=
o

=
=

S
w

Normalized Execution Time

oz H > Model-GF
0.1 H-=Model-LF decreased from
4k 8k 16k 32k 64k
Cache Sizes

10, 00% The two curves of

9. 00% cache eviction rat-

8. 00% .
2 o | g\g\g\ io are overlapped
g oo = because of comp-
2 vom | = letely identical
£ som | cache settings.
= 2. 00% > Model-GF

1.00% ——6—Model-LF

0. 00%
4k 8k 16k 32k 64k

Cache Sizes

Figure 4: Trends of execution time and cache eviction ratid3$-W on various cache sizes.

time where the divisor is the maximal execution time in aditéel configurations. The corresponding
configurations to the maximal execution time are 4KB cachessindeModelGF for both MG and IS.

The performance gap betwebtodelcF andModelF keeps constantly for EP when we change the
cache sizes. The reason is that EP has very bad temporatyo&a it is insensitive to the change of
cache sizes.

5 Related Work

Despite over two decades of research on memory consistendglsy there does not appear to be a
consensus on how memory models should be formalized [6,&7]2The efforts to formalize memory
models for mainstream parallel languages such as the Javamenodel [23], the C++ memory model
[8], and the OpenMP memory model [9] all take different apoiwes.

The authoritative source for the OpenMP memory model canobad in the specifications for
OpenMP 3.0 [24], but the memory model definition therein igvided in terms of informal prose.
To address this limitation, a formalization of the OpenMPmey model was presented in [9]. In this
paper, the authors developed a formal, mathematical lgyggioemodel the relevant features of OpenMP.
They developed an operational model to verify its conforoeato the OpenMP standard. Through
these tools, the authors found that the OpenMP memory medeeaker than the weak consistency
model [14]. The authors also claimed that they found someiguniies in the informal definition
of the OpenMP memory model presented in the OpenMP speasficaersion 2.5 [5]. Since there

The difference of
normalized exec-
0.7 ution time increa-
sed from 0.04 to
0.16 as the cache
size per SPE was

t
S e
© ©

e e
S I=

e o
w A

Normalized Execution Time

0.2 H > Model-GF
0.1 | o~ Model-LF decreased from
0 P . ” 32KB to 4KB.
Cache Sizes

Lo The two curves of

0.90% cache eviction rat-

0.80% [.
Zom | io are overlapped
£ 060 | because of comp-
Eho| letely identical
£ 0.0 | cache Settings.
© 0.20% > Model-GF —

0.1 1 = Model-LF

0. 00%
4k 8k 16k 32k

Cache Sizes

Figure 5: Trends of execution time and cache eviction ratidfG-W on various cache sizes.

is no significant change of the OpenMP memory model from gar&.5 to version 3.0, their work
demonstrates the need for the OpenMP community to work ttseformal and complete definition of
the OpenMP memory model.

Some early research on software controlled caches can bd fauhe NYU Ultracomputer [19],
Cedar [17], and IBM RP3 [25] projects. All three machineséhéacal memories that can be used
as programmable caches, with software taking resportgitidr maintaining consistency by inserting
explicit synchronization and cache consistency operatidsy default, this responsibility falls on the
programmer but compiler techniques have also been dewkiopehich these operations are inserted
by the compiler insteade.g.,[13]. Interest in software caching has been renewed withatheent
of multicore processors with local memories such as the Brelhdband Engine. There have been a
number of reports on more recent software cache optimizdtimm compiler angle as described in
[16, 15, 11].

Examples of recent work on software cache protocol implgatem on CELL processors can be
found in [22, 10, 18]. The cache protocol used in [22] usesrdérakzed directory to keep tract cache
line state information in the implementation - reminds wsNtodelcF cache protocol in this paper. The
cache protocols reported in [10, 18] do not appear to use taadiged directory - hence appear to be
more close to thdlodelLF cache protocol. However, we do not have access to the dktaftrmation
on the implementations of these models, and cannot make a dedinitive comparisons at the time
when this paper is written.

OPELL [20] is an open source toolchain / runtime effort to lempent OpenMP for the Cell Broad-

Xi

band Engine. Our cache protocol framework reported herdoéas developed much earlier in 2006-
2007 frame and embedded in OPELL (see [20])- but the pragdt@mselves are not published exter-
nally.

6 Conclusion

In this paper, we investigate the problem of software cantdementations for the OpenMP memory
model on multicore and manycore processors. We proposestantiation of the OpenMP memory
model —ModeLF which prohibits out-of-thin-air values and avoids the aguiitly of the original mem-
ory model definition on OpenMP Specification 3.BodeLF is scalable with respect to the number
of threads because it does not rely on communications antoegds or a centralized directory that
maintains consistency of multiple copies of each sharecdiar.

We propose the corresponding cache protocol and implerherdache protocol by software cache
on the Cell processor. The experimental results showNtatelLF cache protocol has nearly linear
speedup with respect to the number of threads for a numbeAS8f Rarallel Benchmarks. The results
also show a clear advantage when comparing MtmlelcF cache protocol derived from a stronger
memory model that maintains a global total ordering amorghfliperations.

This provides a useful way that how to formalize (architezwnspecified) OpenMP memory model
in different ways and evaluate the instantiations to prediifferent performance profiles. Our conclu-
sion is that OpenMP’s relaxed memory model with temporagyveiis a good match for software cache
implementations, and that the refinementdadelLF can lead to good opportunities for scalable im-
plementations of OpenMP on future multicore and manycooegssors.

References

[1] Cell Broadband Enginehttp://www-01.ibm.com/chips/techlib/techlib.nsfgoiucts/
Cell_BroadbandEngine.

[2] NAS Parallel Benchmarkhttp://www.nas.nasa.gov/Resources/Software/nplh.htm
[3] PlayStation3 http://www.us.playstation.com/ps3/features.
[4] Tilera. http://www.tilera.com/.

[5] OpenMP Application Program Interface 2005. http://www.openmp.org/mp-
documents/spec25.pdf.

[6] Sarita Adve and Mark D. Hill. A unified formalization of éw shared-memory modeldEEE
Transactions on Parallel and Distributed Systed$13—624, 1993.

[7] Arvind Arvind and Jan-Willem Maessen. Memory model =tmstion reordering + store atomic-
ity. SIGARCH Comput. Archit. New34(2):29-40, 2006.

Xii

[8] Hans-J. Boehm and Sarita V. Adve. Foundations of the Gartearrency memory model. BLDI
'08: Proceedings of the 2008 ACM SIGPLAN conference on Rmogning language design and
implementationpages 68-78, New York, NY, USA, 2008. ACM.

[9] Greg Bronevetsky and Bronis R. de Supinski. Completenfdrspecification of the OpenMP
memory modellnt. J. Parallel Program, 35(4):335-392, 2007.

[10] Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating tiatiasfer for the Cell/B.E. processor.
In ICS '08: Proceedings of the 22nd annual international cogriee on Supercomputingages
289-298, New York, NY, USA, 2008. ACM.

[11] Tong Chen, Tao Zhang, Zehra Sura, and Mar GonzalesdEalRrefetching irregular references for
software cache on CELL. I6GO '08: Proceedings of the sixth annual IEEE/ACM interoaél
symposium on Code generation and optimizatipages 155-164, New York, NY, USA, 2008.
ACM.

[12] Juan Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. GaostFa functionally accurate sim-
ulation toolset for the Cyclops-64 cellular architecturi In Proceedings of the Workshop on
Modeling, Benchmarking and Simulation, pages 11-20, MexligvVisconsin, June 4, 2005. Held
in conjunction with the 32nd Annual International Symposion Computer Architecturepages
11-20, 2005.

[13] Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. famatic management of programmable
caches. INCPP’88: Proceedings of the 1988 International ConferenceParallel Processing
pages 229-238, Augest 1988.

[14] Michel Dubois, Christoph Scheurich, and Faye Briggenmbry access buffering in multiproces-
sors. InISCA '98: 25 years of the international symposia on Compatehitecture (selected
papers) pages 320-328, New York, NY, USA, 1998. ACM.

[15] A. E. Eichenberger, J. K. O'Brien, K. M. O’Brien, P. Wu, Then, P. H. Oden, D. A. Prener,
J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M53¢hwind, R. Archambault,
Y. Gao, and R. Koo. Using advanced compiler technology tdaitxihe performance of the Cell
Broadband EngineTM architecturtBM Syst. J.45(1):59-84, 2006.

[16] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin @i&, Peng Wu, Tong Chen, Peter H.
Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro SoaZalra, Amy Wang, Tao Zhang,
Peng Zhao, and Michael Gschwind. Optimizing compiler far ®ELL processor. IIPACT
'05: Proceedings of the 14th International Conference orabal Architectures and Compilation
Techniguespages 161-172, Washington, DC, USA, 2005. IEEE Computeie§o

[17] D Gajski, D Kuck, D Lawrie, and A Sameh. CEDAR—a largelscaultiprocessor. pages 69-74,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[18] Marc Gonzalez, Nikola Vujic, Xavier Martorell, Eduhryguadé, Alexandre E. Eichenberger,
Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and Katl@iBrien. Hybrid access-specific

Xiii

software cache techniques for the Cell BE architecturePART '08: Proceedings of the 17th
international conference on Parallel architectures andmmlation techniquespages 292-302,
New York, NY, USA, 2008. ACM.

[19] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kew. McAuliffe, Larry Rudolph, and Marc
Snir. The NYU ultracomputer—designing a MIMD, shared-meyngarallel machine. INSCA
'98: 25 years of the international symposia on Computer dedhure (selected paperspages
239-254, New York, NY, USA, 1998. ACM.

[20] Joseph Manzano, Ziang Hu, Yi Jiang and Ge Gan. Toward@sisomatic code layout framework.
In IWOMP '07: Proceedings of the International Workshop on @@ (2007) Beijing, China,
2007.

[21] L. Lamport. How to make a multiprocessor that correetkgcutes multiprocess programlEEE
Trans. on Computer€-28(9):690-691, September 1979.

[22] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, RgsDhun, Zehra Sura, Jungwon Kim,
and SangYong Han. COMIC: a coherent shared memory inteftac€ell BE. In PACT '08:
Proceedings of the 17th international conference on Pataltchitectures and compilation tech-
niques pages 303-314, New York, NY, USA, 2008. ACM.

[23] Jeremy Manson, William Pugh, and Sarita V. Adve. TheaJaemory model. IFPOPL ’'05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium awciPlés of programming lan-
guagespages 378—-391, New York, NY, USA, 2005. ACM.

[24] OpenMP Architecture Review Board. OpenMP Applicatlrogram Interface Version 3.0, May
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[25] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey,J\Kleinfelder, K.P. McAuliffe, E.A.
Melton, V.A. Norton, and J. Weiss. The research paralletgssor prototype (RP3): Introduction
and architecture. InCPP’85: Proceedings of the 1985 International Conferemee Parallel
Processingpages 764—771, 1985.

[26] Vijay A. Saraswat, Radha Jagadeesan, Maged Michadl Gimistoph von Praun. A theory of
memory models. IIPPoPP '07: Proceedings of the 12th ACM SIGPLAN symposiuntiociBles
and practice of parallel programmingpages 161-172, New York, NY, USA, 2007. ACM.

[27] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reci@ & Fences (CRF): a new memory
model for architects and compiler writers. IBCA '99: Proceedings of the 26th annual interna-
tional symposium on Computer architectupages 150-161, Washington, DC, USA, 1999. IEEE
Computer Society.

Xiv

